Sessions & Cookies with PHP
Working with Cookies & User Session

Sessions

Introduction
PHP contents numerous functions for managing keeping track of user information, including both simple cookies and user sessions

Sessions are a combination of a server-side cookie and a client-side cookie, with the client-side cookie containing nothing other than a reference to the correct data on the server. Thus, when the user visits the site, their browser sends the reference code to the server, which loads the corresponding data.

Sessions can be used for a wide variety of purposes. We use them to identify a user, aide in the input of form information and determine user rights on the website. Based upon the information that is extracted about a user during the signup and login process we can do many cool things.

Starting a session: session_start()

A session is a combination of a server-side file containing all the data you wish to store, and a client-side cookie containing a reference to the server data. The file and the client-side cookie are created using the function session_start() - it has no parameters, but informs the server that sessions are going to be used.
you MUST call the session_start() function before anything is output to your web browser.

Example Code

	<?php
echo "This will return an error:
";
session_start();
?>

	<?php
session_start();
echo "above error is avoided:";
?>

[image: image1.png]loginpg.php

Login Page

Usemame: [Calders | userpg.php
Password Welcome Calderal

Your session id is: 44792547F33346 1 dbefi70bb58caa77

Click here to logout

logoutpg. php

[image: image2.png]loginpg.php

if (isset(s_SESSION['userid'1)) { // If the user is already logged in, redirect to the userpage
header (*Location:userpg.php')

) elseit (issec(s_POST["login"]) e (5_POST["login"]
session_starc(); // Start the session
§_SESSION[‘userid'] = §_POST["uname"];
header (' Location:userpg.php')

Login')) (// User is trying to login

)

// Otherwise display the login form

>

<!DOCTYPE HTHL PUBLIC "-//V3C//DTD ETHL 4.01 Transitional//EN" "http://www.u3.org/TR/htald/loose. dtd”>

<neml>

<head>

<titleslogin Page</titles

<meta http-equiv="Content-Type" content

</head>

<body>

<n3>Login Page</n3>

<form name-"forml" method="post’ action="loginpy.php">
Username: <input nene-"uname” type-"text">

Password: <input nane-"passwd” type-"passvord”s

<imput type="submit” name="login” value="Login">

</forw>

</body>

</neal>

50-8859-17>

text/html; charse

[image: image3.png]userpg.php

<?php
session_start(); // Start the session
if (lisset(s_SESSION[‘'userid']) || '§_SESSTON['userid']) (

/7 User is not logyed in, therefore redirect to the login page
header (' Location: loginpg.php') ;

)
7>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTHL 4.01 Transitional//EN"

"http: //wev. w3, org/TR/htuld/Loose. ded™>

<htal>

<head>

<titlesMy Home Page</titles

<meta http-equiv="Content-Type" content="text/htul; charset=iso-8859-1">
</head>

<body>
<h3>Welcome <?php echo §_SESSION['userid'] 7>1</h3>
<p>Your session id is: <?php echo session_id() P</p>
<p>Click here to logout </p>
</body>

</htal>

Logoutpg.php

[image: image4.png]<ophp

session_starc(); // Sterc the session

§_SESSION = arzay(); // Set the §_SESSION to an empty array
session_destroy(); // Destroy the session

header ('Location:
>

oginpg.php'); // Redirect to the login page

Exercise 1

Create html page that lets user to enter following information.

· User Name

· Password

Note:

· Name the html file as login.htm

· Post above entered information to a PHP page called validate.php

	
[image: image5.png]Login Page

User Name

[Password

Submit | Reset

Exercise 2

Write down the code for validate.php that performs following operations.

· Collect the posted information to two session variables.

· You can use user, pass as session names

· Display those session values.

NOTE:

Valid user name: student

Valid password:student321

HINT: you can use following syntax to assign values to sessions.

Exercise 3

Modify above validate.php as it contains hyperlink to another php file called member.php.

With member.php, display a message as following.

Hello <student ID> ….Now you are in members page…

Deleting Sessions
$_SESSION['name'] = FALSE;

or

unset($_SESSION['name']);
Or if you want to delete all session variables (and the session itself), you can do it by using the destroy command.

	session_destroy();

The destroy command is usually used to log-off a user from the membership area.

Using the following syntax, we can check whether the session is still active.

if (isset($_SESSION['name'])){
 …………;
} else {

………;

}
Exercise 4

Modify the member.php as all created sessions are deleted at the end of php page. After deleting, give a hyperlink to another php page called checkSession.php.

In check session.php, check whther the session ‘studID’ using above syntax. If it is not set, display the message “ you are unauthorized user….”.

Persistent Cookies
Also called a permanent cookie, or a stored cookie, a cookie that is stored on a user’s hard drive until it expires (persistent cookies are set with expiration dates) or until the user deletes the cookie. Persistent cookies are used to collect identifying information about the user, such as Web surfing behavior or user preferences for a specific Web site.

Each cookie has a name, value and expiration date and as well as host and path. Information size of an individual cookie is limited to 4Kb.
Client (user)

Server (host)

[image: image6.jpg]

 [image: image7.jpg]EEEEmE:

 Browser store the cookie
 Script connect a cookie and send that cookie with reply
After cookie is set only the originating host can read the data ensuring that user privacy is excepted.
How to Create a Cookie
The setcookie() function is used to create cookies.

Note: The setcookie() function must appear BEFORE the <html> tag.

Syntax

	setcookie(name, value, expire, path, domain);

Example
The following example sets a cookie named "uname" - that expires after ten hours.

	<?php

setcookie("uname", $name, time()+36000);

?>

<html>

<body>

<p>

A cookie was set on this page! The cookie will be active when the client has sent the cookie back to the server.

</p>

</body>

</html>

How to Retrieve a Cookie Value
When a cookie is set, PHP uses the cookie name as a variable. To access a cookie you just refer to the cookie name as a variable.

Note: Use the isset() function to find out if a cookie has been set.

Example

The following example tests if the uname cookie has been set, and prints an appropriate message.

	<?php

if (isset($_COOKIE["uname"]))

echo "Welcome " . $_COOKIE["uname"] . "!
";

else

echo "You are not logged in!
";

?>

Difference between session and cookie?

The key difference would be cookies are stored in your hard disk whereas a session aren't stored in your hard disk. Sessions are basically like tokens, which are generated at authentication. A session is available as long as the browser is opened.

bool session_start (void)

$_SESSION[‘user]="student"; //To assign

print $_SESSION[' user]; // To Display

Request may include user details

Request

Reply

7
1

_1184487440

